Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds

نویسنده

  • S. Khalil
چکیده

Purpose – To introduce recent research and development of biopolymer deposition for freeform fabrication of three-dimensional tissue scaffolds that is capable of depositing bioactive ingredients. Design/methodology/approach – A multi-nozzle biopolymer deposition system is developed, which is capable of extruding biopolymer solutions and living cells for freeform construction of 3D tissue scaffolds. The deposition process is biocompatible and occurs at room temperature and low pressures to reduce damage to cells. In contrast with other systems, this system is capable of, simultaneously with scaffold construction, depositing controlled amount of cells, growth factors, or other bioactive compounds with precise spatial position to form complex cell-seeded tissue constructs. The examples shown are based on sodium alginate solutions and poly-1-caprolactone (PCL). Studies of the biopolymer deposition feasibility, structural formability, and different material deposition through a multi-nozzle heterogeneous system are conducted and presented. Findings – Provides information about the biopolymer deposition using different nozzle systems, the relations of process parameters on deposition flow rate and scaffold structural formability. Three-dimensional alginate-based scaffolds and scaffold embedded with living cells can be freeform constructed according to various design configurations at room temperature without using toxic materials. Research limitations/implications – Other biopolymers may also be studied for structure formation. Studying cell viability and cellular tissue engineering behavior of the scaffolds after the cell deposition should be further investigated. Practical implications – A very useful and effective tool for construction of bioactive scaffolds for tissue engineering applications based on a multinozzle biopolymer deposition. Originality/value – This paper describes a novel process and manufacturing system for fabrication of bioactive tissue scaffolds, automatic cell loading, and heterogeneous tissue constructs for emerging regenerative medicine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-function Based Modeling of 3D Heterogeneous Wound Scaffolds for Improved Wound Healing

This paper presents a new multi-function based modeling of 3D heterogeneous porous wound scaffolds to improve wound healing process for complex deep acute or chronic wounds. An imaging-based approach is developed to extract 3D wound geometry and recognize wound features. Linear healing fashion of the wound margin towards the wound center is mimicked. Blending process is thus applied to the extr...

متن کامل

Preparation of Biopolymeric Nanofiber Containing Silica and Antibiotic

The biocompatible and biodegradable polymer nanofiber with high potential for anti-bacterial coating are used for: multi-functional membranes, tissue engineering, wound dressings, drug delivery, artificial organs, vascular grafts and etc. Electrospinning nanofiber made of scaffolding due to characteristics such as high surface to volume ratio, high porosity and very fine pores are used for a wi...

متن کامل

Mechanical performance of three-dimensional bio- nanocomposite scaffolds designed with digital light processing for biomedical applications

Introduction: The need for biocompatible and bioactive scaffolds to accelerate the regeneration and repair of fractured bones has been considered for bone tissue engineering applications during recent decades. The new methods were developed to produce scaffolds to improve the tissue quality, size of cavities, control the porosity and increase the scaffold compressive strength u...

متن کامل

Functionally heterogeneous porous scaffold design for tissue engineering

Porous scaffolds with interconnected and continuous pores have recently been considered as one of the most successful tissue engineering strategies. In the literature, it has been concluded that properly interconnected and continuous pores with their spatial distribution could contribute to perform diverse mechanical, biological and chemical functions of a scaffold. Thus, there has been a need ...

متن کامل

Tissue Engineering Scaffolds: History, Types and Construction Methods

Tissue engineering is a rapidly growing research field, potentially capable of de novo tissue and organ construction. This approach is used to improve efficiency both in the tissue and cell culture. This method is required to provide bodies in vivo three-dimensional conditions outside of the body (ex vivo). To achieve this goal, given tissue cells are cultured on the tissue engineering scaffold...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005